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We present a detailed theory for infiltration, which accounts for a general model for the dynamic contact
angle between the droplet and the porous medium as well as contact angle hysteresis, and analyze the
resulting equations of motion. The theory shows that infiltration of droplets into dry porous media
involves three phases due to contact angle hysteresis: (1) An increasing drawing area (IDA) phase during
which the interface between the droplet and the porous medium increases, (2) a constant drawing area
(CDA) phase during which the contact line of the droplet remains pinned, and (3) a decreasing drawing
area (DDA) phase. The theory is based on the following assumptions: (1) The droplet has the shape of a
spherical cap, (2) the porous medium consists of a bundle of vertical tubes of same size, and (3) the pres-
sure within the droplet is uniform. We find that infiltration always consists of a cascade process formed
by the IDA, CDA, and DDA phases, where the entire process may begin or end in any of the three phases.
The entire process is formulated with four nondimensional parameters: Three contact angles (initial,
advancing, and receding) and a porous permeability parameter. A comparison of our theory to experi-
mental data suggests that one should use different parameterizations for the dynamic contact angle mod-
els of the IDA and DDA phases. In general, the IDA and DDA phases are described by integro-differential
equations. A numerical-solution approach is presented for solving the dynamic equations for infiltration.
The total time of infiltration and the time dependence of drawing area are critically affected by the occur-
rence of the IDA, CDA, and DDA phases as well as by the permeability. With ordinary differential equa-
tions (ODEs), we are able to approximate the IDA phase and to describe exactly infiltration processes
that start out with the CDA or DDA phase.

© 2008 Elsevier Ltd. All rights reserved.

tems that are not totally wetting (no “remnant” films), Denesuk
et al. (1993) investigated two “limiting” scenarios:

1. Introduction

Infiltration of liquid droplets into dry porous media occurs in
industrial and natural settings: When rain drops fall onto soil, in
ink jet printers, when accidentally spilling organic liquid (e.g., gas-
oline and chlorinated solvents) onto ground, and when aerosol pes- liquid from the droplet, decreases while the contact angle of the
ticides are not intercepted by the vegetation and then released to droplet, 0, remains constant.
soils. In these scenarios, it is important to know how droplet infil- 2. A constant drawing area (CDA) case, during which 0 decreases
tration occurs. For instance, if harmful chemicals are released from until the droplet is depleted (when 6 — 0°). The contact line is
the droplet into the atmosphere through evaporation, it is impor- pinned (does not move) during the CDA phase.
tant to know the time of infiltration. In printing applications, a goal
is to quantify the dynamics of the area wetted by the droplet.

1. A decreasing drawing area (DDA) case, during which the area
between the droplet and the porous medium which withdraws

Later, Holman et al. (2002) built on the work by Denesuk et al.

Hence, models that predict how a droplet infiltrates into a por-
ous medium have been developed. Denesuk et al. (1993) developed
a model that (1) represents the porous medium by a bundle of ver-
tically oriented capillary tubes, (2) treats the model porous med-
ium in a continuum fashion, and (3) assumes the droplet to have
the shape of a spherical cap. See Fig. 1 for the geometry. For sys-
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(1993) and allowed for an increasing drawing area. We refer to this
process as the IDA phase. In order to describe this spreading pro-
cess, Holman et al. (2002) employed the following equation for
the drawing radius Ry of the drop: Ry(t) = (a + bt)" where t is time,
and a, b, and n are constants. This relation indirectly causes the
contact angle 0 to depend on time t. The theory developed by
Holman et al. (2002) has an integrable solution and is appropriate,
when predictions of droplet infiltration are being inferred from the
drawing radius observed as a function of time, Ry(t). Predictions
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Fig. 1. Geometry of a droplet sitting on a porous surface, where Ry is the drawing
radius. In this example, the drawing area decreases. Hence, the vertical capillary
tubes for r > Ry have withdrawn less liquid.

based on initial conditions are, however, not possible. In the model
presented here, we will remedy this limitation.

The Denesuk et al. (1993) and Holman et al. (2002) models de-
scribe infiltration events that consist of either the IDA, CDA, or DDA
phase but not of a combination of these phases because of assump-
tions made about the values of the equilibrium advancing contact
angle 0, and the equilibrium receding contact angle 0,. Denesuk et
al.’s (1993) model for the CDA phase implicitly assumes 0, = 0°,
while Holman et al.’s (2002) model implicitly assumes 6, = 0°. On
porous surfaces, however, 0, and 0, may assume non-zero values
(Bachmann et al., 2003).

Experiments (Bacri and Brochard-Wyart, 2000; Clarke et al.,
2002; Zhdanov et al., 2003) have shown that the IDA, CDA, and
DDA phases may all occur during a single infiltration event. In a re-
cent Letter, Clarke et al. (2002) presented a theory that accounts for
a law for dynamic contact angle based on molecular-kinetic theory
and a general model for contact angle hysteresis. Consistent with
infiltration experiments, Clarke et al. (2002) postulated that drop-
let infiltration involves the IDA, CDA, and DDA phases and that the
phases presumably occur subsequently.

The scope of this paper is to present a detailed theory for infil-
tration of a droplet into a porous medium. The theory will account
for contact angle hysteresis and clearly show how 6, and 6, enter
the equations of motion. Note that we do not address infiltration
in totally wetting systems (Alleborn and Raszillier, 2004; Daniel
et al., 2006; Zadrazil et al., 2006), for which the spreading coeffi-
cient is >0 and hysteresis does not occur. We will show that infil-
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Fig. 2. Infiltration occurs in three phases. (a) During the IDA phase, the drawing
radius Ry increases while the contact angle of the droplet 0 decreases until it
assumes the advancing contact angle 6,. (b) During the CDA phase, 0 decreases from
0, until it assumes the receding contact angle 0, while R, = const. (¢) During the DDA
phase, Ry decreases until the droplet is depleted.

tration occurs in the following three phases (see Fig. 2) and prove
that these phases occur exactly in that order, where the entire pro-
cess may begin or end in any of the three phases:

1. In the IDA phase, the initial contact angle of the drop,
0; = 0(t=0), is assumed to be larger than 0, and R, increases.
As the velocity of the contact line, Ry, gradually becomes smal-
ler, 0 decreases until it assumes 0, at time t =t,.

2. In the CDA phase, the contact line remains pinned while 6
decreases until it assumes 0, at time t=t,.

3. In the DDA phase, the contact line starts moving again. Ry
decreases until the droplet is depleted at the final time t =tz

Furthermore, we will

. account for a general class of models for dynamic contact angle;

. present a comprehensive dimensional analysis;

3. discuss the limits of validity of our theory with respect to the
spherical cap assumption and neglecting gravity;

4. present approaches for representing the equations of motion by
integro-differential equations and ordinary differential equa-
tions (ODEs);

5. present a numerical-solution approach for our theory; and

6. compare our theory to experiments, from which we draw

conclusions on the behavior of dynamic contact angle on porous

surfaces.

N —

2. Model for infiltration
2.1. Modeling assumptions

2.1.1. Porous medium

We build on the work of Denesuk et al. (1993) and model the
porous medium by a bundle of vertically oriented capillary tubes.
The tubes withdraw liquid from the droplet as shown in Fig. 1.

2.1.2. Mass conservation

Neglecting evaporation and assuming incompressibility of the
liquid, the total volume of liquid, Vp, remains constant during
infiltration,

Vo = Va(t) + V,(b) (1)

where V,, is the volume of liquid in the porous medium, and Vy is the
volume of the droplet.

2.1.3. Spherical cap assumption

We assume radial symmetry. Moreover, the droplet is assumed
to have the shape of a spherical cap. Hence, the volume of the drop-
let is (Denesuk et al., 1993)

Va = E(0)R; (2)
where
~ 7 (1 —cos0)(cos0+2)
=35 0(cos 0+ 1) 3)
The radius of curvature of the droplet is
_ Rq

¢ sing 4)
The height of the droplet is
H=R.(1 - cos0) (5)

Fig. 3 shows ¢ and

d¢ T

bk 6
do  (1+cos0)’ ©

One can show that d¢/d6 > 0 for 0 < 0 < 180°.
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Fig. 3. Dependence of the ¢ function, which is used to calculate the droplet volume
according to Eq. (2), and its derivative on contact angle 6.

The spherical cap approximation assumes internal flow to have
negligible impact on droplet shape. Should a spherical droplet be
administered to the porous surface with an impingement velocity
v;, then the assumption is justified if the Weber number (ratio of
typical inertial to capillary forces) We = pRyv?/y is small where
p is the liquid density, Ry is the radius of the droplet, and 7y is sur-
face tension.

The spherical cap assumption moreover requires gravity to be
negligible. According to the hydrostatic pressure distribution, grav-
ity causes a difference in liquid pressure between the surface of the
porous medium and the top of the liquid droplet, Ap, = pgH, where
g is gravitational acceleration. This pressure difference causes cap-
illary pressure p. to vary on the droplet surface. Because the air
pressure is about constant (due to the low density of air), the cap-
illary pressure difference between the top and bottom of the drop-
let is Ap; = |Ap¢|. The variation in p. causes the radii of curvature of
the air-liquid interface to be nonuniform, i.e., non-sphericity. The
effects of gravity on droplet sphericity are negligible if |Ap. < p.
where p. = 27/R. is the capillary pressure of the droplet with the
shape of a spherical cap. Using Eq. (5), the condition for a spherical
cap becomes
Ap| _pgH® 1

De - 2y 1—cos(9<<1 @)

Note that this condition is fulfilled even if 0 — 0, because then
H — 0 and hence |Ap(|/p.: — O.

The validity of Inequality (7) during an entire infiltration event
can be verified by evaluation of the initial conditions, because the
droplet height H, more or less, decreases with time t. For example,
for silicone oil from Table 1, a droplet height H=1 mm, and a con-
tact angle 0 = 90°, |Ap(|/p: =~ 0.22, i.e., gravity has negligible impact
on droplet shape. In the simulation presented in this paper,
Inequality (7) is always fulfilled.

2.1.4. Neglecting gravity when modeling flow in tubes

We model flow in the tubes with Washburn’s (1921) equation.
For mathematical convenience, we, like Denesuk et al. (1993) and
Holman et al. (2002), do not account for the effects of gravity on
flow by assuming the tubes to be horizontally oriented when

Table 1
Liquid properties of SF-96 silicone oil at a temperature of 25 °C (Hoffman, 1975).

Dynamic viscosity 7
Surface tension y
Density p

0.958 kg/(m s)
21.3 x 103 N/m
971 kg/m>

modeling flow. The liquid pressure at the tube inlet is assumed
to equal atmospheric pressure. When infiltration starts at time
t =0, the length of the liquid slug in the tube as a function of time
tis

h(t) = AVt (8)

where

_ [Ryycosa
A=\ 9)

R, is the tube radius, # is the dynamic viscosity, and « is the equilib-
rium contact angle in the tubes that represent the porous medium.
We assume « < 90°; otherwise liquid is not sucked into the tubes.

Washburn (1921) derived a general solution that also accounts
for gravity. For vertical downward infiltration, Washburn (1921)
obtained

h t h

h—o—g_ln<l+h—0) (10)
where we nondimensionalized the solution by introducing a length
scale ho = 2ycoso/(pgR,) and a time scale

1 COS o
to =16 11
0 ngz Rf (11)
Neglecting gravity is permissible for infiltration times
Lt (12)

because then the In(...) term can be expanded in a Taylor series that
retains terms only up to second order. This results in the solution
given by Eq. (8).

Strictly speaking, one first needs to solve our model for infiltra-
tion numerically in order to check whether Inequality (12) is ful-
filled. If the infiltration duration is not much smaller than t,, the
solution for times not much smaller than t, is deficient. For the sil-
icone oil from Table 1, a tube size of R, = 0.1 mm, a tube contact an-
gle o =0°, we obtain to=1 h. This time scale exceeds by far the
durations of the infiltration simulations presented in this paper.
Hence, we can safely assume that Inequality (12) is fulfilled.

2.1.5. Continuum representation of the porous medium

Assuming that R; > R, we can treat the porous medium as a
continuum of porosity €. To calculate V,, we first quantify the liquid
volume that, at time t, has infiltrated into the porous medium
through a ring with radius r and infinitesimally small width dr:

dv,(t) = e2rrh(ti(r, t))dr (13)

where t{r,t) is the period of time for which infiltration has occurred
at radial position r and at time t. The total volume of liquid in the
porous medium at time t is:

V,(t) = / Wo 4 _ 27 / rh(ti(r, £))dr (14)
o dr Jo

Even if the continuum condition Ry > R; is initially fulfilled, it

may be violated in a later stage of infiltration. One must be cautious

about using a continuum model for small droplet sizes, but if one

does, it makes sense to assume infiltration to be terminated when

Ri=R, (15)

because then the droplet “falls” into a tube of the porous medium.

2.1.6. Constant pressure in the droplet

Denesuk et al. (1993) as well as we assumed that the liquid
pressure in the droplet remains constant during infiltration and
is equal to atmospheric pressure p,. In reality, the differential equa-
tion for infiltration into a horizontal tube is (Washburn, 1921):
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R 2
%: (p,,ofpa+%f cosoc)SRﬁ (16)
where p;o is the liquid pressure at the tube inlet (the upper surface
of the porous medium). Here we slightly generalized the equation
derived by Washburn (1921, Eq. (9)) who assumed that a liquid res-
ervoir, of depth d and with a flat air-liquid interface, supplies liquid
to a horizontal capillary tube. Using our notation, he wrote pgd in-
stead of p;p — pe- The solution given by Eq. (8) assumes that d does
not depend on time t and specifically that d = 0, that is, p;o = p,. We
can neglect the p;o — p, term in Eq. (16) only if |p;o — pa| < 27ycoso/
R:. Using the fact that p;o — p, is the capillary pressure 2y/R. and
using Eq. (4), we can rewrite the condition that allows us to assume
constant pressure in the droplet as follows:

Ry coso > R, sin6 (17)

Note that both R; and 6 depend on time t.

If Ry — Ry, as is possible during the final stages of the DDA phase,
our theory may not be applicable as Inequality (17) is not fulfilled.
If our theory is implemented when Inequality (17) is violated, the
solution will underestimate the rate of infiltration. If o is small,
then the condition is more likely to be fulfilled, potentially for
the entire infiltration event. Also if 0(t) is small toward the end
of infiltration, the condition is more likely to be fulfilled. When
presenting simulation results, we will indicate when Inequality
(17) is not fulfilled.

2.1.7. Dynamic contact angle
We assume that the dynamic contact angle 6 is described by the
following general model F:

0 = F(,00) (18)
where
p=1" (19)

Y
is the nondimensional (positive) contact line velocity, v is the
dimensional (positive) contact line velocity, and 0, is the equilib-
rium contact angle.

Little is known about which functional form to use for F on por-
ous surfaces. For impermeable surfaces, Cox (1986) derived a func-
tional form for F that is consistent with Eq. (18). For that, Cox
(1986) used basic fluid-mechanical principals, including a no-slip
condition (zero-fluid velocity) on the solid surface, except in the
vicinity of the three-phase contact line where fluid slip is assumed
to occur.

Since the no-slip condition assumed by Cox (1986) is not ful-
filled on a porous surface and since Cox’ (1986) model for F is de-
fined through an integral, this paper uses two empirical relations
for F that possess simpler functional forms. The first relation was
proposed by Jiang et al. (1979), who analyzed capillary tube exper-
iments, which Hoffman (1975) performed with five different
liquids:

cos 0 = cos 0y — (1 + cos 0p) tan h(4.96 - °7%2) (20)

The second relation is the Hoffman-Voinov-Tanner law

where ¢, ~ 72 (Sikalo et al., 2005). An advantage of Eq. (20) over Eq.
(21) is that Eq. (20) conforms to the upper geometrical bound for
the contact angle, 6 < 180°. Note that in Eqs. (20) and (21) both 6
and 0q are measured in the advancing fluid. Also in both cases, F in-
creases monotonically with 2,

dF

7> (22)

Hence, F can be inverted. For the model given by Eq. (20) one
obtains

. - 1 4 /cos 0y — cos 0\ ]1/0702

and

F _ 4 96.0.702 . 30208 L1000 oo 24 g6 o702 (24)
dv sin 0

For the model given by Eq. (21) one obtains

R _ 0 -6

2(0,00) = F (0, 00) = —— (25)
and

dF ¢

05~ 37 e

We note that Davis and Hocking (2000), who performed a the-
oretical study that assumes a constant microscopic equilibrium
contact angle of 1° and uses the lubrication approximation for flow
in the droplet, even question Eq. (18), that is, that 0 is a single-val-
ued function of 2. Their theory, however, still lacks experimental
support. Moreover, it is not clear whether their findings also apply
to equilibrium contact angles other than 1° and how to account for
contact angle hysteresis. Hence, our analysis builds on Eq. (18).

2.1.8. Contact angle hysteresis

Contact angle hysteresis occurs due to chemical heterogeneity
and surface roughness and causes a non-unique equilibrium con-
tact angle 0y, which is bound between the advancing contact angle
0, and the receding contact angle 0,. The actual contact angle 0 can
change between 6, and 0, without any contact line movement, as is
the case during the CDA phase and as is illustrated in Fig. 4b. If
0> 6,4, then the contact line moves outwards as shown in Fig. 4a,
the IDA phase is assumed, and the dynamic contact angle 0 is,
according to Eq. (18), given by

0—F, ("TR” 9a> (27)

where the subscript a in F, indicates that this model is parameter-
ized by 0,. If 0 < 0,, then the contact line moves inwards as shown in
Fig. 4c, the DDA phase is assumed, and the dynamic contact angle 0
is given by

n—@—F,(—nTRd,n—Gr> (28)

where the subscript r in F, indicates that this model is parameter-
ized by 6,. Note that the droplet contact angles 6 and 6, enter Eq.
(18) as = — 0 and 7 — 0,, respectively, because the two contact an-
gles in Eq. (18) are measured in the advancing fluid, which is the
gas phase during the DDA phase. Further, R; < 0 enters Eq. (18)

(a) IDA phase

(b) CDA phase (c) DDA phase
Fig. 4. (a) During the IDA phase, the drawing radius R4 increases, and 0 > 0,. (b)
During the CDA phase, R, is constant, and 0 varies between 6, and 0,. (c) During the
DDA phase, R, decreases, and 0 < 0,.
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with a minus sign, because the velocity in Eq. (18) is positive. We
expect different parameterizations for F, and F,, because Cox
(1986) has shown that the dynamic contact angle on impermeable
surfaces depends on the ratio of viscosity between the advancing
and receding fluid. It seems reasonable to assume that this also
holds true for the permeable surfaces considered in this study.

The theory that we develop will only use Eqs. (27) and (28) but
not specific parameterizations for F, and F.. Thus, our model as-
sumes only that F, and F; are continuous and increase monotoni-
cally with the contact line velocity 2.

2.2. Infiltration during the IDA phase

We denote the time when infiltration begins at radial position r
by t,(r). During the IDA phase, all tubes with radial position r with-
in the initial drawing area withdraw liquid from the droplet start-
ing at time t = 0, that is, t,(r) = 0 for 0 < r < Ry(0). Tubes outside this
region get invaded later on, that is, t,(r) > 0 for r > R4(0). At time t,
all tubes with r value smaller than the current (and increasing)
drawing radius R,4(t) will have withdrawn liquid from the droplet
until that time t. Hence, at time t, infiltration will have occurred
for a duration

‘ _ ft—ty(r) for 1< Ry(t)
t‘(”)_{o for 1> Ry(t)

The duration t; is larger for r < R4(0) than for Ry(0) < r < Ry(t), be-
cause tubes in the latter region are not supplied with liquid at time
t=0 but need to wait until the expanding droplet starts feeding
them with liquid. Fig. 5a illustrates t, and t;. Using Eqgs. (14) and
(29), the total volume of liquid in the porous medium becomes:

(29)

V,(t) = 27e / e rh(t — ty(r))dr (30)
0

For the mathematical analysis, it is advantageous to recast Eq. (30)
as follows:

V() 27re/Rd t h(r— ty(r))dtdr

Ry(
_nAe/ “ / d‘cdr (31)
T— tb

The shaded area in Fig. 5a depicts the integration domain of the
integral. We evaluate the double integral in Eq. (31) by changing
the order of integration, similar to the analysis of Denesuk et al.
(1993) for the DDA phase. For the IDA phase, however, we first need

XG)

to eliminate the integration limit ¢, in the integrand so that we can
change the order of integration. This is done via the substitution
T=T—ty

" /Rd(f) /t*tb(r) r dvd 32
= TAe —=dt'dr
Y N (52

We now change the order of integration:

CoRn mAe ['Ri(t—1)
V,(t :TEAE/ / —drdt =—— | 4+ _
p(0) o bR 2 b Vi

Substituting the expressions for Vg and V,, given by Egs. (2) and (33),
respectively, into Eq. (1) yields:

TAe (' Ri(t—1)
4 —dt=V 34
2 h e : .
Together with Eq. (27) for 0 during the IDA phase, we obtain an inte-
gro-differential equation for Ry(t):

nR4 B 1 nAe [t RA(t—1)
Fa< ) 9) = <R3 {Vo ) derD (35)

It is intuitive that the contact line of the droplet slows down
with time, because liquid, according to Eq. (8), is sucked into the
porous medium in a diffusive manner. Indeed, one can show that
the contact line decelerates. Substituting Eq. (2) into Eq. (1) and
differentiating it with respect to t yields

de dFa 1, <3ng +v )

dr (33)

E(O)R; +

dodv M=k, TR (36)
Since d¢/d0 >0, ¢ > 0, Ry >0, dF,/d¥ >0, and V,, > 0, it indeed
follows that R; < 0. Hence, the advancing. contact line slows down.
The IDA phase ends once 0(t) = 0, (when R; = 0) and is followed by
the CDA phase described next (unless 0, = 0).

2.3. Infiltration during the CDA phase

For both the IDA and DDA phases, the liquid volume in the pore
space is given by Eq. (33), because for both phases t; is given by Eq.
(29). Hence, by substituting Eq. (2) for the droplet volume and Eq.
(33) into Eq. (1), one obtains an explicit expression for the contact
angle:

o 1|, e [“Rit-1)
T A L o R
b
O E—— s =)
B2z t (r)
5 e’

=Y
/

Fig. 5. (a) lllustration of the time t,, at which infiltration begins in a tube a position r during the IDA phase. The arrows indicate the duration of infiltration, ti(r,t) = t — t,(r), for

tubes at position r and time t. (b) lllustration of the time t,, at which infiltration ends in a tube a position r during the DDA phase. The arrows indicate t;(r,t) =

te(r) — tp(r). In

both plots, the black solid line represents the drawing radius R, as a function of the ordinate time 7.
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Here, the Ry in the integrand is known:

Rpa(t) for t<t
) _ IDA( ) a (38)
Ry(ty) for ta<t<t,

where Ripa is the (numerically determined) drawing radius from the
IDA phase (t, = 0 if the IDA phase does not occur).

Once 0 assumes 0,, the CDA phase is over for the following rea-
sons: (1) # cannot become smaller than 6,, because the contact an-
gle of a non-moving contact line is bound between 6, and 6,; and
(2) 0 cannot increase again, because this would cause the droplet
volume Vj, to increase as can be seen from Eq. (2) and dé&/d0 > 0.
Such an increase, however, is not possible due to mass conserva-
tion, which requires V; to decrease, because the liquid volume in
the porous medium increases monotonically according to Wash-
burn’s equation (8). Thus, the infiltration process is a cascade pro-
cess, where the CDA phase cannot re-assume the IDA phase, as this
would require 0 > 0,. Instead, infiltration continues with the DDA
phase described next.

Ra(t

2.4. Infiltration during the DDA phase

In the DDA phase, the contact line starts moving again. At any
time t, only tubes with radial position r < Ry(t) participate in the
DDA phase. For any time t, we denote the time when infiltration
has ended at position r as t,(r,t). This time t, is equal to the current
time ¢ for tubes with radial position r < Ry(t) and is smaller than t
for tubes with radial position Ry(t) <1 < Ry4(ts) = Ry(t), where it is
related to the inverse of the unknown variable R,(t):

t for r < Ry(t)
te(r,t) = » (39)
Ry (r) for Ry(t) <1 < Ry(ta)
The duration, for which infiltration has occurred at time t and posi-
tion r, is

for 0<r<Ry(ty)

t,‘(r, f) =

te(r,t) — tp(1) (40)
0

for 1> Ry(ty)
(

Fig. 5b illustrates t. and t;. Using Eqgs. (14) and (40), the volume of
liquid in the porous medium becomes

V,(t) = 2me / M (.0 — ty(r)dr (41)
0

Mass conservation according to Eq. (1) together with this expres-
sion for V,, and the droplet volume according to Eq. (2) yields

21e /Rd(tﬂ) lh(t (] t) — tp(r))dr +R3 E(0) =V 42
e\l b( )) dq( ) 0 ( )
0

Together with Eq. (28) for 0 during the DDA phase, Eq. (42) turns
into an integro-differential equation for Ry(t):

F; —n—Rd,anr
b

Ry(ta)
e (13 {vo - Zne/ it t) - r,,(r))er (43)
Ry 0
where t,(r) is related to Ry(t) through Eq. (39).

The DDA phase is the final phase of infiltration, that is, the cas-
cade of the IDA, CDA, and DDA phases cannot be reversed. After 6
starts decreasing from 0,, two cases may occur. The contact angle
0 goes to zero thereby terminating infiltration, because then,
according to Eq. (5), the droplet height H = 0 and hence the droplet
volume V, = 0. Alternatively, 0 might increase, 0 > 0. The following
consideration shows that 0 will never exceed 0, in the latter case,
i.e.,, the motion is always described by the integro-differential

equation for the DDA phase. Substituting Eq. (2) into Eq. (1) and
differentiating the latter with respect to t yields

sdé,
dﬁf)—o (44)

We can now solve for

V,+3RiR;E + R

U, + 3R

3 d¢
Ri%

0= (45)
As the potential cross-over point to the CDA phase (0=0,) is ap-
proached, the contact line velocity R; — 0, while d&/do>0 and
V, > 0 for t < oo, because liquid volume in any tube of the porous
medium increases with time t according to Washburn’s equation
(8). Hence, 0 < 0 as the cross-over point is approached. Cross-over
would, however, require 0 > 0.

2.5. Nondimensional formulation

To minimize the number of parameter dependencies that need
to be investigated we nondimensionalize the equations of motion
for Ry and 0. We use the radius of the (hypothetically) spherical
drop at time t=0 as a typical length scale Ry, i.e., Vo = 47R3/3. A
typical velocity can be derived from fluid properties:

)i
Vo =+ 46
0=y (46)
We can now introduce a nondimensional time
P2
t= Ro t (47)
and a nondimensional drawing radius
s . Ry(t
Ra(D) = ;; ) (48)
0

With these definitions we recast the equations of motion, and
Eq. (35) for the IDA phase becomes

" (1 |4 maA [PRAE-1) .
Fa(Ry,0) =& = |- - == [ =4t 49
where R, = dRy/dt, and

A=¢€ Re cos o (50)
\/ Ro

is a porous permeability parameter that depends on porous med-
ium geometry (through R; and €), the wetting properties in the por-
ous medium (through o), and initial droplet size (through Ro). Eq.
(37) for the CDA phase becomes

R 1 [4n ma [PRAE-1) .
Ot = g1 |V — = d—dT 51
=< <R§,(ta) 3 wBh Vi =
Eq. (43) for the DDA phase becomes

Fr(—AiivTC—Hr)

L 1 |41 Rd(fu)A P A
_n_¢ 1(@ {371/1\/2/0 N t)tb(r)er (52)

where #=r/Ry, t, = tyvo/Ro, and i, =t.vo/Ro. If an infiltration
event starts out with the IDA or DDA phase, the initial condition is

i am \"
Ra(0) = (35@,-)) 53)

If it starts with the CDA phase, the initial condition is 6(0) = 0;.
We identify the following four nondimensional parameters that
govern the infiltration problem:
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1. The initial contact angle of the drop, 0;;

2. The equilibrium advancing contact angle of the drop, 0,;

3. The equilibrium receding contact angle of the drop, 0,; and
4. The porous permeability parameter A.

In addition, one needs to specify two models for dynamic con-
tact angle, F, and F,. Lacking a generally accepted model F for dy-
namic contact angle 0 on porous surfaces, the simulations used
to investigate general properties of our theoretical model (see Sec-
tions 3-5) employ Eq. (20) to parameterize both F, and F.. Only in
the case study (see Section 6) and in a comparison to an analytical
solution (see Appendix A), we use Eq. (21) and consider c;, to be a fit
parameter.

Please see Appendix A for the numerical methods used to solve
the nondimensional equations of motion. In Appendix A, we also
present comparisons of numerical simulations to analytical solu-
tions that serve as a validation of the numerical solution techniques.

3. Sequences of infiltration phases

Depending on the initial contact angle of the droplet, 6;, an infil-
tration event starts out with either the IDA, CDA, or DDA phase. The
following subsections will treat these three cases as well as the
possible sequences of infiltration phases that may occur. To gener-
ate these cases we performed a set of simulations that use different
values for 6;, 6,, and 6, but keep A from Eq. (50) constant. The value
of 0; relative to 0, and 0, determines with which phase infiltration
starts. The final phase is determined by the exact values of 0,, 0,,
and A. If the DDA phase is assumed, infiltration is over either once
the drawing radius R; becomes smaller than the radius of the por-
ous medium tubes, R, according to Eq. (15) or once the contact an-
gle of the droplet 0 = 0, which implies that the droplet height H=0
according to Eq. (5).

3.1. Infiltration starts with the IDA phase, 0; > 0,

Four different cases concerning the subsequent occurrence of
the CDA and DDA phases exist (see Fig. 6):

(a) Droplet infiltration includes the DDA phase. Infiltration is
over when Ry(tf) = R, whereas the contact angle of the drop-
let remains positive throughout the entire infiltration,
0(t)>0 for 0 <t < ¢

(b) Droplet infiltration includes the DDA phase. Infiltration is
over when 0(t;) = 0, whereas Ry(t) > R for 0 < t < &y

(c) If 0, =0, then the DDA phase does not occur.

(d) If 0,=0, then the CDA and DDA phases do not occur. This
case has been investigated by Holman et al. (2002).

Fig. 6a illustrates that there is a tendency of the contact angle 0
to rebound to 0, during the final DDA phase, that is, to increase
after the initial decrease. Only if 0, is close to 0 and if the lengths
of the liquid slugs in the tubes, h, are sufficiently small, then, once
the DDA phase is assumed, the liquid will be sucked into the tubes
quickly enough such that a sufficiently large contact line velocity
R4 can be achieved that allows for 0(tf) = 0. This is the case for
the simulation shown in Fig. 6b, whereas the simulation shown
in Fig. 6a ends with 0(t;) >0 and R4(ty) = R, because of the larger
0. The values of 0; and 0, also control whether 0(t)=0 or
0(ty) > 0, because they control the drawing area and hence the
length of the liquid slugs at the beginning of the DDA phase. For
smaller 60; values, the droplet is flatter (for a fixed initial droplet
volume, A =const.); hence, the liquid slugs at the beginning of
the DDA are shorter, and it is more likely that 6(t;) = 0. The total
time of infiltration tends to be shorter for lower 0, values, because

the drawing area in the DDA phase becomes larger as is evident
when comparing Fig. 6a and b.

3.2. Infiltration starts with the CDA phase, 0, > 0; > 0,

To categorize infiltration events that begin with the CDA phase,
we can build on the analysis performed for the case where infiltra-
tion starts out with the IDA phase and simply remove the IDA
phases in Fig. 6. Fig. 7 shows the three cases that may occur:

(a) Droplet infiltration includes the DDA phase. Infiltration is
over, when the drawing radius becomes smaller than the
size of the porous medium tubes, Rs(t;)=R; whereas
0(t)>0for0< t< ¢

(b) Droplet infiltration includes the DDA phase. Infiltration is
over, when the contact angle of the droplet vanishes,
0(tp) = 0, whereas Ry(t) > R, for 0 < t < tr As compared to Case
(a), the lower 0, value allows for 0(tf) =0 at the end of the
DDA phase.

(c) If 6,=0, then the DDA phase does not occur. This case has
been investigated by Denesuk et al. (1993).

3.3. Infiltration starts with the DDA phase, 0, > 0;

To categorize infiltration events that start out with the DDA
phase, we can build on the analysis performed for the case where
infiltration starts out with the CDA phase and simply remove the
CDA phases in Fig. 7. Fig. 8 shows the two cases that may then
occur:

(a) Infiltration is over, when the drawing radius becomes smal-
ler than the size of the porous medium tubes, R4(tf)=R;,
whereas 0(t) > 0 for 0 < t < tr At the very end of the simula-
tion, for times to the right of the dashed lines in Fig. 8a,
Inequality (17) is not fulfilled. Hence, the model underesti-
mates the rate of infiltration.

(b) Infiltration is over, when the contact angle of the drop van-
ishes, 0(t;)=0, whereas R4(t)>R; for 0 < t< t Again, the
lower 0, value allows for 60(t;) = 0.

4. Sensitivity to porous permeability parameter A

In the previous section, we discussed the effects of three out of
the four nondimensional parameters that govern droplet infiltra-
tion. Let us finally discuss the role of A defined in Eq. (50). We con-
sider a scenario where 6;, 6,, and 6, are being held constant while A
is decreased.

As A decreases, infiltration slows down. A decrease in A can be
accomplished by a change of several dimensional quantities: A de-
crease in tube size R, will increase viscous dissipation in the liquid
and hence slow down flow. A decrease in porosity € will reduce the
amount of pore space available for liquid withdrawal and hence
also slow down infiltration. An increase in tube contact angle o
(up to the maximum value of 90°) will reduce the capillary pres-
sure at the advancing liquid-air interface and hence the driving
pressure gradient in the liquid. The two simulations presented in
Fig. 9 show that lowering A slows down infiltration in nondimen-
sional temporal space. This statement is also correct in dimen-
sional temporal space as the relationship between t and t
according to Eq. (47) does not change as one varies R,, €, and o.
Increasing the initial droplet size Ry also causes A to decrease
and hence infiltration to slow down, both in nondimensional and
dimensional temporal space (even though the relationship be-
tween t and t depends on Ry), because a larger droplet volume re-
quires a longer time of infiltration.
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Fig. 8. The two cases that may occur, if infiltration starts with the DDA phase. (a) For 0; = 0, = 60°, infiltration ends when R, = R,. (b) For 0; = 0, = 5°, infiltration ends when
0 = 0°. Other simulation parameters: R, = 0.1 mm, R, = 0.6 mm, o = 0°, € = 0.3, fluid properties of silicone oil.
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Fig. 9. Sensitivity of infiltration to the porous permeability parameter A. Solid lines: A = 0.12. Dashed lines: A = 0.06. Other simulation parameters: 0; = 100°, 0, = 60°, and
0,=5°. Color code as in Figs. 6-8. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

As illustrated in Fig. 9, a smaller 4 value also makes 0(t;) = 0°
less likely, because the stronger flow resistance prevents the drop-
let from achieving the high contact line velocity Ry associated with
0=0°.

5. ODE approaches for the IDA and DDA phases
5.1. Motivation

In our theory, the dynamics of the IDA and DDA phases is gov-
erned by the integro-differential equations (35) and (43). This is be-
cause the state of our droplet-porous medium system is not only
described by the instantaneous values of R;and 6 but also by the his-
tory of the system, that is, the order in which the porous medium
tubes have been invaded by liquid. Many scientific computing
packages, however, do not provide numerical solvers for integro-dif-
ferential equations. Hence, we developed approaches that approxi-
mate the integro-differential equations by ordinary differential
equations (ODEs), for which a wealth of numerical solvers exists.

5.2. IDA phase

Deriving Eq. (34) with respect to time t and using Eq. (27) for 0
and Eq. (6) for dé¢/dO, we obtain
T dF, 17+, mAe d ['Ri(t-1)

3E(O)RRy +—— Sl g3 TC /

(1+cosg)> dv y 2 dt )y 7

(54)

This is an integro-differential equation for Ry(t), where R4(0) and
R4(0) are the initial conditions. To turn Eq. (54) into an ODE we turn
the derivative of the integral into a function of R; and its derivatives.
For that, we expand the well-behaved R? in the integrand in a Taylor

series: R3(t — T) ~ R3(0) + 2R4(0)R4(0)(t — 7). Hence, we can evalu-
ate the derivative of the integral in Eq. (54),
d [*Ri(t-1) R3(0) .

- dt ~ - + 4VtRy(0)R4(0
il s o 4(0)R4(0)
Finally, substituting the latter equation into Eq. (54) yields an ODE
for Ry(t):

(55)

T dF, n

_ 2 » Hall 3
0 = 3E(O)RX(D)Ry(1) T t? @ TROR (D

A€ {Rﬁ(m (56)

2 | Vi

To facilitate the numerical solution, we nondimensionalize this
second-order ODE and recast it as a system of two first-order ODEs
where j/] (f) = RoRd(t) and _}A/z(i') = yoRd(t):

. Y2

¥ 2
(51; ) =| sy (y‘%w m«wz(m)

(1+c§su>23f>ﬁ

We used the Runge-Kutta method (Press et al., 1992) to solve this
ODE system. Fig. 10 compares the prediction from solving the inte-
gro-differential equation (35) to the one from solving the ODE. The
agreement is excellent for small values of t and is good for most of
the IDA phase. The deviation between the two predictions increases

with time t, because then the Taylor series expansion for R2 be-
comes less accurate.

+ 4\/fRd(O)Rd(O)]

(57)

5.3. DDA phase

One can describe infiltration by an ODE, if infiltration does not
involve the IDA phase (or if the duration of the IDA phase is negli-
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Fig. 10. Comparison of the integro-differential equation approach for the IDA phase to the ODE approach. Simulation parameters: 0; =

€=0.3, o = 0°, fluid properties of silicone oil.

gible). Infiltration may, however, include the CDA phase. Figs. 7a,b
and 8 show examples for such scenarios. We start from Eq. (42)
using t,(r) = 0 for r < Ry(0):
R4(0) 3
2me / rh(te(r, 6))dr + R2(0) = Vo (58)
Jo

where 0 is given by Eq. (28). We recast the integral by using

h(te(r,t)) = [o:"" h(t)dt and h(t) = A/(2V7):
R4(0 te(r.,t)
TeA / drdr+R £(0) = Vo (59)
0
Changing the order of integration yields
meA ' R(T) 3500
= ), R dt + Rzé(0) = Vo (60)

Differentiation with respect to t and using Eqs. (6) and (28) yields
an ODE for Ry(t):

n;AR?})_BRsz (0 )+R3(1 +Z)s(9)2 dFr(f/‘,iZer) ngZO (61)
where 7 = —nRy/y according to Eq. (19). We obtain

:ij =496-0.702 - v 298#5&#(4 96 - 90702) (62)
for a dynamic contact angle according to Eq. (20) and

- S (63)

for a dynamic contact angle according to Eq. (21). The initial condi-
tions for Eq. (61) are given by Ry(t;) and Ry(t,).

To facilitate the numerical solution of the second-order ODE
(61), we nondimensionalize it and recast it as a system of two
first-order ODEs:

y, V2
<y1> — dF 1 1 () (64)
¥ -(&#) 5 (;% ( +i;§ +sin0(2 + cos H)yz)

where ¥, (£) = RoRy(t), J2(£) = voRy(t), and where we used Eq. (3)
for £(0). We use the Runge-Kutta method to solve this ODE. Special
caution has to be taken, however, if (1) the DDA phase starts out
with the receding contact angle 6, and the Jiang et al. (1979) model
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Fig. 11. Comparison of the integro-differential equation approach for the DDA phase to the ODE approach. Simulation parameters: 0; = 0, = 60°, R; =

o =0°, and liquid properties of silicone oil.
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for dynamic contact angle according to Eq. (20) is used because then
dF,/d? = oo for #(0) = 0 according to Eq. (24) and/or (2) the entire
infiltration event starts out with the DDA phase because then
1/t = oo for t=t,=0. In both cases, we use the following algo-
rithm for the first time step Af of the DDA phase, which starts out
with ¥, ~ 0 and y,(f) = y1(t,). Using the second row of Eq. (64),
d? = —dy,, and d0 = —dF,, we can solve for the change in contact
angle:

2
do— — 1 (/1 (1+ cos6)

yl(fa) ﬁ \/E

Integration over the initial time step At yields:

+sin (2 + cos H)jfz(fa)>df (65)

L 1 A
A0:0(ta+At)70(tU):fyl(fa) [ﬁ (1+cos0)? (\/ta+At7\/—)
+sin0(2 +cos H)jlz(fa)Af] (66)

From A6, we can now calculate the contact line velocity according
to Eq. (28):

—R(t, + At = F' (T — 0, — AO, T — 0;) (67)

From time &, + At on, Eq. (64) can be solved numerically with initial
drawing radius Ry(f, + A) ~ Ry4(f,) and initial contact line velocity
Ry (t, + Ab). Only if one uses the modified first time step, the simu-
lated R; and Rd/ values are continuous at t = Af.

Fig. 11 shows excellent agreement between the numerical solu-
tion of the ODE (64) and the numerical solution of the integro-dif-
ferential equation (43). This fact can be considered as a validation
of the numerical implementations of both the ODE and integro-dif-
ferential equation.

6. Case study

We tested our model by comparing it to an experiment per-
formed by Clarke et al. (2002) where a droplet infiltrated into a frit
with a nominal pore diameter of 0.22 pum. Clarke et al. (2002) fitted
their infiltration model to their data and obtained a fit which indi-
cates potential shortcomings of their modeling approach. Fig. 12
shows that the slopes of both Ry and 0 at the final measurement time
are not described well by the model, perhaps because Clarke et al.
(2002) assumed the CDA phase not to occur, 0, = 6,, for that data set.

b 0
2% IE
e
= 50- —ODE
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0.1 mm, Ry = 0.6 mm,
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Fig. 12. Model fits to experimental data by Clarke et al. (2002). Our model fits match the data better than the model fit by Clarke et al. (2002), because we account for the CDA
phase and allow for different parameterizations of dynamic contact angle in the IDA and DDA phases. Color code as in Figs. 6-8. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Using two different sets of fit parameters, we fitted our model
to that data set by minimizing the deviation between measured
and simulated Ry(t) and 0(t) curves. Both sets use Ry, v =7/9, 0;,
0a 0;, and A as fit parameters, but the sets differ in the parameter-
ization of dynamic contact angle. Contrary to Clarke et al. (2002),
we allow the CDA phase to occur. We use the model for dynamic
contact angle according to Eq. (21), where we consider ¢, to be a
fit parameter in order to account for the presence of a permeable
solid surface. Our first fit allows for different parameterizations
of the dynamic contact angle model for the IDA and DDA phases
by using different c, values labeled as ¢4, and c, respectively.
We obtain ¢, = 814 and ¢, = 1479. Fig. 12 shows that our model
describes the data much better than the fit by Clarke et al.
(2002). In our second fit, we use the same parameterization for
F, and F; for the IDA and DDA phases and obtain ¢, = ¢, = 1073.
As shown in Fig. 12, the quality of the fit becomes worse but is still
better than the fit by Clarke et al. (2002). A comparison of the three
fits suggests that (1) it is important to account for contact angle
hysteresis and the resulting physical process of the CDA phase;
and (2) the law for dynamic contact angle is different for the IDA
and DDA phases. The significant difference between c,, and ¢, is
not unexpected, because liquid displaces air during the IDA phase,
while air displaces liquid during the DDA phase. Cox’ (1986) theory
then suggests that F, differs significantly from F, because of the
dramatic difference in the viscosity ratio.

The fitted values for c;, and ¢, are significantly higher than the
value obtained for impermeable surfaces, ¢, ~ 72. Since ¢* — 63 fol-
lows the general trend of the uncompensated Young force on the

contact line, y(cosfp — cosf) (de Gennes et al., 1990), we can con-
clude that the uncompensated Young force is higher for permeable
than for impermeable surfaces for a fixed contact line velocity R.
The uncompensated Young force is countered by viscous forces
in the vicinity of the contact line (Leger and Joanny, 1992). Hence,
the larger c; values are reasonable, because viscous forces increase
with surface roughness.

7. Conclusions and discussion

We developed a model for infiltration of droplets into porous
media that accounts for a dynamic contact angle 0 of the droplet
as well as hysteresis of the equilibrium contact angle. As a result,
droplet infiltration may involve an IDA, CDA, and DDA phase,
which may occur only in this order; however, the entire process
may start and end in any of the three phases. Our theory agrees
very well with an experiment performed by Clarke et al. (2002)
as illustrated in Fig. 12 and, as required, converges to analytical
solutions for the CDA and DDA phases as shown in Appendix A.
Fig. 13 summarizes the six different sequences that may occur.
The behavior of contact angle 6 critically affects the duration of
the three infiltration phases and the total time of infiltration. In
the nine simulations presented in Figs. 6-8, we kept the initial
droplet volume, the porous medium properties, and the liquid
properties constant, while varying 0;, 0,, and 0,. The total time of
infiltration may vary by several orders of magnitude. Smaller 0,
values tend to shorten the total time of infiltration. Even if the
initial drawing radius, Ry(0), and hence 0;, are the same, the total
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Fig. 13. Overview of the six sequences of IDA, CDA, and DDA phases that may occur. The initial contact angle 0; determines with which phase infiltration begins. Infiltration
then follows a cascade that may include the IDA, CDA, and DDA phases. Infiltration may end in any of the three phases. Labels at the arrows toward the end box denote the

sections (and case labels) that discuss the corresponding sequences.
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time of infiltration may vary by a factor of 2.5, as can be seen from
a comparison of Fig. 6a and d. Likewise, 0;, 0, and 0, affect the
dependence of drawing radius R; on time t. This may be of crucial
interest when liquid droplets are administered either intentionally
or unintentionally to porous surfaces.

The porous permeability parameter A defined in Eq. (50) signif-
icantly affects the time of infiltration. Increasing liquid viscosity 7
and lowering interfacial tension ) increases the total time of infil-
tration. Note that the four nondimensional parameters that formu-
late the problem do not depend on these two quantities. An
increase in infiltration time occurs, because # and 7y affect the typ-
ical velocity 7o, which in turn affects the relation between dimen-
sional and nondimensional time according to Eq. (47).

In general, the dynamics of the IDA and DDA phases are given
by integro-differential equations, because the liquid distribution
in the porous medium tubes memorizes an infiltration event in a
way not solely captured by the state variables Ry and 6. One can re-
fer to this phenomenon as hysteresis. Denesuk et al. (1993) were
able to turn an integro-differential for droplet infiltration into an
ODE, because they considered infiltration events, in which all tubes
underneath the droplet are invaded by liquid at time t=0. This
condition, however, is not met in the IDA phase. Nonetheless, we
were able to approximate the early stage of the IDA phase by the
ODE given by Eq. (56). If infiltration starts out with the CDA or
DDA phase, infiltration can be described exactly by the ODE given
by Eq. (61). Contrary to the ODE derived by Denesuk et al. (1993),
our ODE accounts for a dynamic contact angle 6. ODE approaches
have the advantage that they can be solved numerically with many
scientific computing packages. In this work, they also served as an
additional means of validating our numerical method for solving
the integro-differential equations.

Even though the functional form F for the dynamic contact
angle 0 given by Eq. (18) is quite general, little is known about
how F exactly depends on nondimensional contact line velocity
2. In this paper, we used expressions for F that are based on
measurements in capillary tubes with impermeable walls. We
expect an F relation for a porous surface to differ significantly
from the one for an impermeable surface, even if the solid phase
consists of the same material, because the surface of a porous
medium is much more irregular and because liquid loss through
infiltration into the porous medium changes flow boundary con-
ditions. Indeed when fitting Eq. (21) for F, which has been ob-
tained for impermeable surfaces, to an infiltration experiment,
we obtain higher c; values (see Section 6). This suggests that a
highly irregular permeable surface causes a higher nonequilibri-
um force on the moving contact line of a droplet than a rela-
tively smooth impermeable surface. More studies are, however,
needed to confirm and potentially revise our functional form
for F on permeable surfaces.

Using different models for dynamic contact angle 6 will not
change our main findings: (1) The order in which the infiltration
phases occur, (2) the dimensional analysis, and (3) the approxima-
tion of the equations of motion by ODEs. This is because our anal-
yses only employ a very general and reasonable property of
dynamic contact angle 0, namely that 0 increases monotonically
with the contact line velocity 2.

Our theory is based on several simplifying assumptions which
might need to be reconsidered in certain applications:

1. Our theory does not explicitly model flow within the droplet. It
assumes uniform pressure in the droplet. This assumption may
not be appropriate for infiltration of a droplet falling down onto
a porous surface immediately after the impact, because then the
droplet shape and pressure distribution in the droplet may be
very complicated due to the internal flows induced by the
impact.

2. While we accounted for a dynamic droplet contact angle 0, we did
not account for a dynamic tube contact angle «. Even though this
is not entirely consistent, the occurrence of the IDA, CDA, and
DDA phases were our prime interest. Principally, it is possible
to account for a dynamic contact angle in the tubes. Chebbi
(2007), for example, extended Washburn’s theory to account
for the dynamic contact angle law given by Eq. (20); however,
the resulting approximate analytical solutions are only valid for
small or large times. This causes problems with the implementa-
tion of these solutions. We expect our simulation results to
change, if a dynamic o was accounted for; however, we do not
expect the main conclusions of the paper to change.

3. One can easily envision scenarios (e.g., large rain drops falling
onto soil), where one cannot use the spherical cap approxima-
tion for droplet shape due to gravity.

4. Our model assumes the porous medium to consist of tubes that
are not interconnected. The pore spaces of many porous media
possess, however, a much more complicated topology, which
will cause lateral spreading of the liquid in the porous medium.
Future work should account for the network structure of porous
media. For that one could build on the theories for droplet infil-
tration developed by Anderson (2005) and Daniel et al. (2006).
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Appendix A. Numerical solution
A.1. IDA phase

The integro-differential equation for the IDA phase given by Eq.
(49) is of the following form:

R = #(R(0),I(t)) (68)

where we omitted the subscript d in Ry as well as the hats used to
indicate nondimensional variables,

I(t) = /Ot RZL\/%T)dr (69)
and
HR,1)=F' (5*1 (% [4?” - %1} ) , ea) (70)

Note that F;‘ (&1 is a (unique) function, because both F, and ¢ are
monotonically increasing functions. We invert ¢ numerically using a
linear interpolation on a discrete set of &, = &(6,,) values evaluated
for a dense set of 0,, values ranging from 0 to n. The F, functions
can also be inverted numerically. In this paper, however, we used
Eqgs. (20) and (21) for F,. Hence, we could simply use the closed-
form expression for F,' given by Eqs. (23) and (25). Eq. (68) allows
using the numerical-solution technique described in Chapter 11 of
Linz (1985). We discretize time,

t, = nAt (71)
where n=0,1,2,... and At is the time step. Then,

Ry =R(tn) (72)
The integral deserves special attention, because the singularity in

the integrand at 7 = 0 causes a problem when using the trapezoidal
integration rule. Hence, the integral is split up into two parts:
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I =I(t,) = /OM Rz(t”iﬁ’f)dw/: Rz(t”i\/;f)dr (73)
In Ig

To determine I,, we expand R? in a first-order Taylor series,
R*(tn — T) ~ R2 — 2R,R, T, where R, = (R, — R,_1)/At. With that
Iy = 2R*(AD)'? — anRn, (At)*? (74)

For Ig, we employed the trapezoidal rule. To step forward in time,
we integrate Eq. (68):

rtng1 "tni
/ Rdt =R,;1 — R, = / A (R(t),I(t))dt (75)
Jitn Jtn
Approximating the integral with the trapezoidal rule yields
At
Rni1 = Ry + [#(Rnia, Iniq) + A (Ra, In)] 5 (76)

This is a nonlinear equation for R,.; that is in standard form for
solution with the method of fixed-point (Picard) iteration (Press
et al,, 1992). We terminate the iteration when |R}, — R. ,|/R} is
smaller than a prescribed error, e.g., 10~%, where the superscript de-
notes the iteration number. In convergence studies, we ensured that

simulation results are not sensitive to the termination threshold.
A.2. CDA phase

To solve Eq. (51) numerically we first determine t,, that is, the
time when the CDA phase is over. For that, we evaluate Eq. (51)
for an initial guess for t. and iterate t, until 6(t,) = 6,. Then, we
calculate 0 at discrete times t, between t, and t. according to
Eq. (51). We evaluate the time integral in Eq. (51) according to
Eq. (73) for the IDA phase, where we use the same time steps
for the IDA and CDA phases. By employing the same time steps,
the Rﬁ and /T terms can be evaluated at the same t, values
when numerically evaluating the integral, thus avoiding interpo-
lating either variable.

A.3. DDA phase

The integro-differential equation for the DDA phase, Eq. (52), is
of the form given by Eq. (68), but I(t) is now given by

0= [ D (77)
0

and

R = F (n s <% [‘%” - nAfzz} ) - or) (78)

As in the IDA phase, we discretize time, t, = t, + nAt, and integrate
Eq. (68) from t, to t,.; to obtain Eq. (76), which again can be solved
by the method of Picard iteration. Only the function . and the inte-
gral I are defined differently. We used different time steps for the
DDA and IDA phases, because these processes have different maxi-
mum contact line velocities Ry. Choosing different time steps re-
quires interpolating t,(r) when evaluating the integral given by
Eq. (77) (we used a linear method).

A.4. Comparison to an analytical solution for the DDA phase

Denesuk et al. (1993) derived an analytical solution for the case
where the contact angle between the droplet and the surface of the
porous medium, 0, remains constant. The drawing radius Ry
decreases as follows (see Eq. (15) in Denesuk et al., 1993):

Rd:Rd(O)<l— ! ) (79)
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Fig. 14. Validation of our computer code by comparison to an analytical solution for
the case where only the DDA phase is assumed. For ¢, — 0, our simulations converge
to the analytical solution given by Eq. (79). Simulation parameters: 6; = 0, = 25°,
R;=0.1 mm, Ry =1 mm, o = 0°, € =0.3, fluid properties of silicone oil.

140

Analytical solution
120 — Simulation

1001

801

0 (deg)

60+

401

201

80

Fig. 15. Validation of our computer code by comparison to an analytical solution for
the case where only the CDA phase is assumed. Our simulation reflects the
analytical solution given by Eq. (81). Simulation parameters: 0o = 0, = 135°, 0, = 0°,
Ry=0.1 mm, Ry =1 mm, & =0°, € =0.3, fluid properties of silicone oil.

where

2
oo = 601 *V3 (1) (80)
is the duration of infiltration. The analytical solution of Denesuk
et al. (1993) allows validating our computer code for solving droplet
infiltration during the DDA phase. Our model should approximate
the Denesuk et al. (1993) solution, if we use Eq. (21) for dynamic
contact angle and let ¢, — 0, because then 0(t) — 6,. Fig. 14 shows
that this is indeed the case.

A.5. Comparison to an analytical solution for the CDA phase

Denesuk et al. (1993) obtained an analytical solution for the
case where 0, = 0 and only the CDA phase occurs. We slightly gen-
eralize their solution to allow for 6, > 0. As Ry(t) = const. = R4(0)
during the CDA phase, Eq. (37) becomes:

0(t) = ¢! (R;(O) [vo - nAeRf,(O)\/fD (81)
Infiltration is finished at time

Vo - R(0)(0)\
Tepa = tr = (TcAeRﬁ(O)) (82)
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As it should, our ¢, agrees with Eq. (14) in Denesuk et al. (1993) if
0,=0. Fig. 15 shows that our computer code accurately reflects
the analytical solution for the CDA phase.

References

Alleborn, N., Raszillier, H., 2004. Spreading and sorption of a droplet on a porous
substrate. Chem. Eng. Sci. 59, 2071-2088.

Anderson, D.M., 2005. Imbibition of a liquid droplet on a deformable porous
substrate. Phys. Fluids 17, 087104.

Bachmann, J., Woche, S.K., Goebel, M.-0O., Kirkham, M.B., Horton, R., 2003. Extended
methodology for determining wetting properties of porous media. Water
Resour. Res. 39, 11-1-11-14.

Bacri, L., Brochard-Wyart, F., 2000. Droplet suction on porous media. Eur. Phys. J. E
3,87-97.

Chebbi, R., 2007. Dynamics of liquid penetration into capillary tubes. ]J. Colloid
Interf. Sci. 315, 255-260.

Clarke, A., Blake, T.D., Carruthers, K., Woodward, A., 2002. Spreading and imbibition
of liquid droplets on porous surfaces. Langmuir 18, 2980-2984.

Cox, R.G., 1986. Dynamics of the spreading of liquids on a solid surface. Part 1:
Viscous flow. J. Fluid Mech. 168, 169-194.

Daniel, R.C., Berg, J.C., 2006. Spreading on and penetration into thin, permeable print
media: application to ink-jet printing. Adv. Colloid Interf. Sci. 123-126, 439-469.

Davis, S.H., Hocking, L.M., 2000. Spreading and imbibition of viscous liquid on a
porous base. II. Phys. Fluids 12, 1646-1655.

de Gennes, P.G., Hua, X., Levinson, P., 1990. Dynamics of wetting: local contact
angles. J. Fluid Mech. 212, 55-63.

Denesuk, M., Smith, G.L., Zelinski, B.J.J., Kreidl, N.J., Uhlmann, D.R., 1993. Capillary
penetration of liquid droplets into porous materials. J. Colloid Interf. Sci. 158,
114-120.

Hoffman, R.L., 1975. A study of the advancing interface. J. Colloid Interf. Sci. 50, 228-
241.

Holman, RK., Cima, M.J., Uhland, S.A., Sachs, E., 2002. Spreading and infiltration of
inkjet-printed polymer solution droplets on a porous substrate. J. Colloid Interf.
Sci. 249, 432-440.

Jiang, T.S., Oh, S.-G., Slattery, J.C., 1979. Correlation for dynamic contact angle. J.
Colloid Interf. Sci. 69, 74-77.

Leger, L., Joanny, J.F., 1992. Liquid spreading. Rep. Prog. Phys. 55, 431-486.

Linz, P., 1985. Analytical and numerical methods for Volterra equations. SIAM Stud.
Appl. Math. 7.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vattering, W.T., 1992. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, London.

Sikalo, ., Wilhelm, H.-D., Roisman, L.V., Jakirli¢, S., Tropea, C., 2005. Dynamic contact
angle of spreading droplets: experiments and simulations. Phys. Fluids 17,
2103+. doi: 10.1063/1.1928828.

Washburn, E.W., 1921. The dynamics of capillary flow. Phys. Rev. 17, 273-283.

Zadrazil, A., Stepanek, F., Matar, 0.K.,, 2006. Droplet spreading imbibition and
solidification on porous media. J. Fluid Mech. 562, 1-33.

Zhdanov, S.A., Starov, V.M., Sobolev, V.D., Velarde, M.G., 2003. Spreading of aqueous
SDS solutions over nitrocellulose membranes. J. Colloid Interf. Sci. 264, 481-
489.



	Infiltration of liquid droplets into porous media: Effects of dynamic contact  angle and contact angle hysteresis
	Introduction
	Model for infiltration
	Modeling assumptions
	Porous medium
	Mass conservation
	Spherical cap assumption
	Neglecting gravity when modeling flow in tubes
	Continuum representation of the porous medium
	Constant pressure in the droplet
	Dynamic contact angle
	Contact angle hysteresis

	Infiltration during the IDA phase
	Infiltration during the CDA phase
	Infiltration during the DDA phase
	Nondimensional formulation

	Sequences of infiltration phases
	Infiltration starts with the IDA phase, θi>θa
	Infiltration starts with the CDA phase, θa⩾θi>θr
	Infiltration starts with the DDA phase, θr⩾θi

	Sensitivity to porous permeability parameter Λ
	ODE approaches for the IDA and DDA phases
	Motivation
	IDA phase
	DDA phase

	Case study
	Conclusions and discussion
	Acknowledgments
	Numerical solution
	IDA phase
	CDA phase
	DDA phase
	Comparison to an analytical solution for the DDA phase
	Comparison to an analytical solution for the CDA phase

	References


